

Programmable transient voltage suppressor for SLIC protection

Datasheet - production data

Features

- · Programmable transient suppressor
- Wide negative firing voltage range: V_{Gn} = -175 V max.
- Low dynamic switching voltages: V_{FP} and V_{DGL}
- Low gate triggering current: I_{GT} = 5 mA max.
- · Peak pulse current:
 - $I_{PP} = 100 \text{ A} (10/1000 \text{ µs})$
 - I_{PP} = 150 A (5/310 µs)
 - I_{PP} = 500 A (2/10 µs)
- Holding current: I_H = 150 mA min.

Benefits

- TrisilTM is not subject to ageing and provides a fail safe mode in short-circuit for a better level of protection.
- Trisils are used to ensure equipment meets various standards such as UL60950, IEC 60950 / CSA C22.2, UL1459, TIA-968-A (formerly FCC part 68)
- Trisils have UL94 V0 approved resin (Trisils are UL497B approved [file: E136224]).

Description

This device has been especially designed to protect new high voltage, as well as classical SLICs, against transient overvoltages.

Positive overvoltages are clamped by 2 diodes. Negative surges are suppressed by 2 thyristors, their breakdown voltage being referenced to -V_{BAT} through the gate.

LCP154DJF is specified to comply with ITU-T K20/21/45 and GR1089-Core when associated with Cooper Bussmann Telecom Circuit Protector fuse TCP 1.25 A.

LCP154DJF is packaged in a PowerFLAT™ 5x6 to meet IEC/UL 60950 clearance requirements.

Tip NC Gn Ring

Figure 1. Functional diagram

TM: Trisil is a trademark of STMicroelectronics

Characteristics LCP154DJF

1 Characteristics

Table 1. Standards compliance

Standard	Peak surge voltage (V)	Voltage waveform	Required peak current (A)	Current waveform	Minimum serial resistor to meet standard (Ω)
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 100	2/10 μs 10/1000 μs	0
GR-1089 Core Second level	5000	2/10 µs	500	2/10 µs	0
GR-1089 Core Intra-building	1500	2/10 μs	100	2/10 µs	0
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	0 0
ITU-T-K20 (IEC 61000-4-2)	8000 15000	1/60 ns	ESD contact discharge ESD air discharge		0 0
IEC 61000-4-5	4000 4000	10/700 μs 1.2/50 μs	100 100	5/310 μs 8/20 μs	0 0
TIA-968-A, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 100	10/160 μs 10/560 μs	0 0
TIA-968-A, lightning surge type B	1000	9/720 µs	25	5/320 µs	0

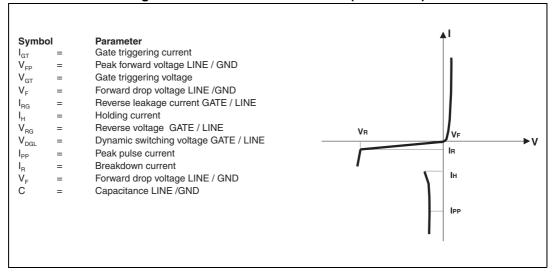

LCP154DJF Characteristics

Table 2. Absolute ratings ($T_{amb} = 25 \text{ °C}$)

Symbol	Parameter	· ams	Value	Unit
		10/1000 µs	100	
		8/20 µs	400	А
		10/560 μs	140	
I _{PP}	Peak pulse current ⁽¹⁾	5/310 µs	150	
		10/160 μs	200	
		1/20 µs	400	
		2/10 μs	500	
		t = 10 ms	35	Α
		t = 0.2 s	18	
	on repetitive surge peak on-state current	t = 1 s	12	
I _{TSM}	(50 Hz sinusoidal) ⁽¹⁾	t = 2 s	10	
		t = 15 min	4	
		t = 30 min	3	
V_{GN}	Negative battery voltage	-175	V	
T _{stg}	Storage temperature range	-55 to +150	°C	
Tj	Operating junction temperature range	-55 to +150		
T _L	Maximum lead temperature for soldering d	260	°C	

The rated current values may be applied either to the RING to GND or to the Tip to GND terminal pairs.
 Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case
 the GND terminal current will be twice the rated current value of an individual terminal pair).

Figure 2. Electrical characteristics (definitions)

Characteristics LCP154DJF

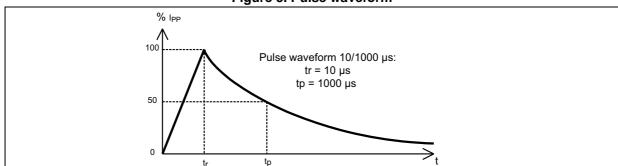


Figure 3. Pulse waveform

Table 3. Parameters (T_{amb} = 25 °C unless otherwise specified)

Symbol		Min	Тур	Max	Unit		
I _{GT}	V _{LINE} = -48 V			0.1		5	mA
I _H	V _{Gn} = -48 V			150			mA
V _{GT} ⁽¹⁾	at I _{GT}					2.5	V
I _{RG}	V _{RG} = -175 V V _{RG} = -175 V		$T_j = 25 ^{\circ}\text{C}$ $T_j = 85 ^{\circ}\text{C}$			5 50	μА
V _{DGL} ⁽¹⁾	$V_{Gn} = -48 V^{(1)}$	10/700 μs 2/10 μs	I _{PP} = 150 A I _{PP} = 200 A			12 20	V
V _F	I _F = 5 A		t = 500 μs			3	V
V _{FP(I)}	10/700 μs 2/10 μs		$I_{pp} = 150 \text{ A}$ $I_{pp} = 200 \text{ A}$			7 10	V
I _R	$V_{Gn / LINE} = -1 V$ $V_{LINE} = -175 V$ $V_{Gn / LINE} = -1 V$ $V_{LINE} = -175 V$		$T_j = 25 ^{\circ}\text{C}$ $T_j = 85 ^{\circ}\text{C}$			5 50	μΑ
С	$V_{LINE} = -50 \text{ V}, V_{RMS} = 1 \text{ V}, f = 1 \text{ MHz}$ $V_{LINE} = -2 \text{ V}, V_{RMS} = 1 \text{ V}, f = 1 \text{ MHz}$				35 100		pF
C _G	Gate decoupling capacitance			100	220		nF

^{1.} The oscillations with a time duration lower than 50 ns are not taken into account.

LCP154DJF Technical information

2 Technical information

To SLIC side

GND

GND

GND

GND

Figure 4. Example of PCB layout based on LCP154DJF protection

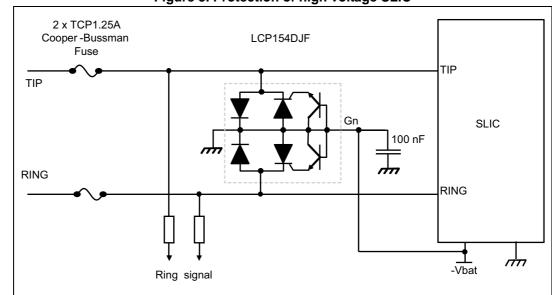
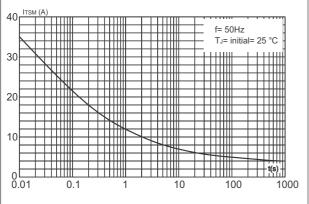
Figure 4 shows the classical PCB layout used to optimize line protection. The 2 mm distance is used to comply with IEC/UL 60950 clearance requirements.

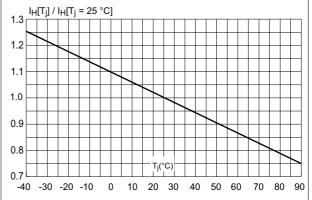
The capacitor C is used to speed up the crowbar structure firing during the fast surge edges.

This allows minimization of the dynamic breakover voltage at the SLIC Tip and Ring inputs during fast strikes. Note that this capacitor is generally present around the SLIC - Vbat pin.

So to be efficient it has to be as close as possible from the LCP Gate pin and from the reference ground track (or plan).

The schematics of *Figure 5* give the topology used to protect all SLICs according to ITU-T K20/21/45 and GR1089-Core.


Figure 5. Protection of high voltage SLIC

Technical information LCP154DJF

Figure 6. Surge peak current versus duration

Figure 7. Relative variation of holding current versus junction temperature

3 Package information

Epoxy meets UL94, V0

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Package information LCP154DJF

3.1 PowerFLAT[™] 5x6 package information

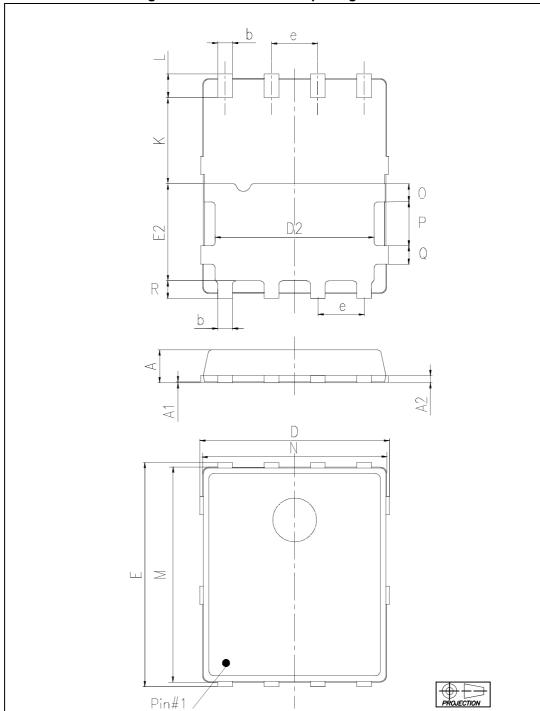


Figure 8. PowerFLAT™ 5x6 package outline

LCP154DJF Package information

Table 4. PowerFLAT™ 5x6 mechanical data

		Dimensions						
Ref		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.80		1.00	0.315		0.394		
A1	0.02		0.05	0.008		0.020		
A2		0.25			0.098			
b	0.30		0.50	0.118		0.197		
D	5.0		5.4	1.969		2.126		
E	5.95		6.35	2.343		2.500		
D2	4.25		4.45	1.673		1.752		
E2	2.56		2.76	1.008		1.087		
е		1.27			0.500			
L	0.50		0.80	0.197		0.315		
K	2.25			0.886				
М	5.75		5.95	2.264		2.343		
N	4.90		5.10	1.929		2.008		
0	0.40		0.60	0.157		0.236		
Р	1.10		1.30	0.433		0.512		
Q	0.40		0.60	0.157		0.236		
R	0.35		0.65	0.138		0.256		

Package information LCP154DJF

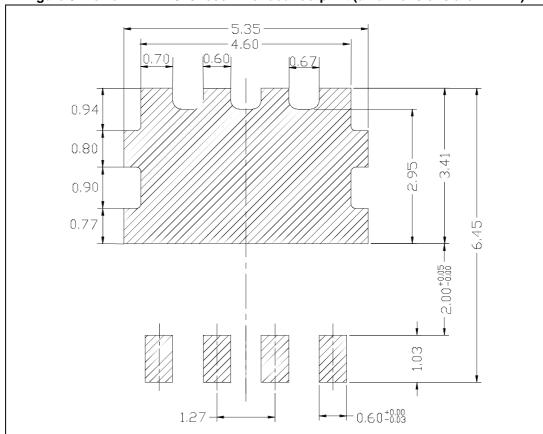
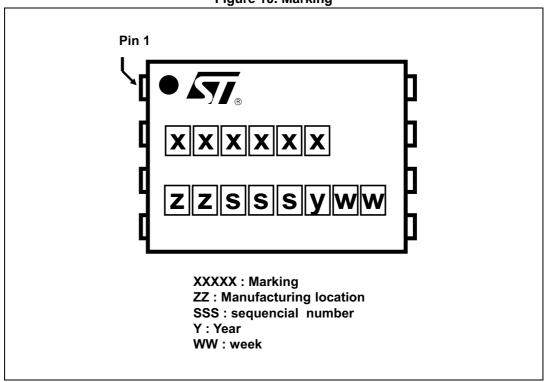



Figure 9. PowerFLAT™ 5x6 recommended footprint (all dimensions are in mm.)

LCP154DJF Package information

Figure 10. Marking

Ordering information LCP154DJF

4 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
LCP154DJF	CP154	PowerFLAT 5x6	91 mg	3000	Tape and reel

5 Revision history

Table 6. Document revision history

Date	Revision	Changes
13-Oct-2015	1	First issue.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

